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Abstract

Past research on the speech of apnoea patientevesed
that resonance anomalies are among the most digtfigg
traits for these speakers. This paper presentpproach to
characterize these peculiarities using GMMs andadce
measures between distributions. We report the rigsli
obtained with two analytical procedures, workingthwia
purpose-designed speech database of both healtlgpamea-
suffering patients. First, we validate the dataktasguarantee
that the models trained are able to describe thastic space
in a way that may reveal differences between grotlibsn we
study abnormal nasalization in apnoea patientsolgidering
vowels in nasal and non-nasal phonetic contexts. résults
confirm that there are differences between the ggpand that
statistical modelling techniques can be used tarides this
factor. Results further suggest that it would besfibs to
design an automatic classifier using such discrtiie
information.

Index Terms: Obstructive Sleep Apnoea (OSA), Gaussian
Mixture Models (GMMs), Abnormal Resonance

1. Introduction

Obstructive sleep apnog®SA) is a highly prevalent disease
[1] which affects an estimated 2-4% of middle-ageldlts. It
is characterized by recurrent episodes of slegiaglcollapse
of the upper airway at the level of the pharynxd anis
usually associated with loud snoring and increadagime
sleepiness. OSA is a serious threat to an indiVisllaalth if
not treated (cardiovascular diseases, traffic act&] etc). It
can be diagnosed on the basis of a characterisgtorp
(snoring, daytime sleepiness) and physical examimat
(increased neck circumference), but a full overhigleep
study —a conventiondPolysomnographywhich involves the
recording of neurophisiological and cardiorespinato
variables (ECG)- is usually needed to confirm preseasf the
disorder. This diagnostic procedure is expensivé ame-
consuming, and patients must often endure longivgalists
before the test is carried out.

Alternative methods for early diagnosis of apnoatepts
would be greatly beneficial, primarily if they alo a
significant reduction of the time-to-diagnosis. 8gle-based
methods for OSA detection are promising in thigpees by
virtue of their non-intrusive nature and their puial to
provide quantitative data relatively quickly. Sinttee upper
airways are affected by OSA disease, it seems mah$® to

consider whether there are any distinctive spedghak
patterns associated with OSA. Research in thistzedegun
to produce evidence supporting this idea. Much alaliel
information can be found in Fox and Monoson’s wfitk a
perceptual study in which skilled judges compaiesl \toices
of apnoea patients with those of a control groefe(red to as
“healthy” subjects). They observed certain pecitiew in the
voices of OSA patients, such as abnormal reson@heavork
we present here focuses mainly on this factor) aoth
articulation and phonation abnormalities. Thesenzaiies,
rather consistently present in OSA speakers aneénahis
speakers without the condition, open the path tplozg
automatic methods to discriminate between both iod
voices, and thus help in the early diagnosis oftrabtve
sleep apnoea.

Identifying the distinctive features of OSA speeehuires
a dedicated effort to design and collect a consistiatabase
that allows contrasting speech data from OSA-suffeand
healthy speakers, highlighting those elements efecp in
which the reported OSA-related anomalies are coniynon
found. This requires recording a purpose-designeeech
corpus. Our corpus design follows phonetic and uisiic
criteria derived from the previous work of Fox addnoson
[2], and it also incorporates data from a prelimjndatabase
described in [3].

Other relevant literature delves into certain sfieespects
of the acoustic analysis of OSA speaker voices.ifstance,
interested readers will find in [4] an excellentsdeption,
from a physiological point of view, of vocal tragsonances
in OSA adults. The study condensed in Fiz et dl.ig5also
useful background work for our purposes, as theydpas we
do, on both apnoea disease and vowel sounds. Howetvite
they consider direct inspection of the spectratesgntation of
the collected data, we apply generative statistinatelling
techniques based oBaussian Mixture Model§GMMSs) to
describe acoustical spaces (those of specific syusmkakers
or speaker groups) conveniently for the purpose of
characterizing the voice of apnoea speakers. Folpwhis
approach further recognition or classification tastan be
performed based on the likelihood that a given omkm
sound or utterance was generated by a trained msidelarly
to what is done in Automatic Speaker Recognitiortiesys
(ASR). In previous work [6] excellent classificaticates were
achieved by modelling short-time speech spectrum
information with cepstral coefficients and using @hbased
classification techniques.

In the present contribution we test the potentfalising
GMMs to model and characterize distinctive apna@aes. In
[7] we already successfully applied this methodgameric
vowel sounds, confirming that there are indeed ifiagmt



differences between apnoea and "healthy” groupkgyeaand
that GMM techniques are capable of describing this
discriminative information. First we will validateur speech
database to guarantee that the heuristic GMM maddailsed
condense enough information to distinguish betwbeth
groups. Next, we will focus on abnormal resonanthest
appear in apnoea speakers, since distinguishiitg fom OSA
patients have been traditionally sought for in tht®ustical
aspect. Due to an altered structure of the upp®ragj this
anomaly should result in an abnormal vocal quaditg, in

(UBM) from phonetically balanced utterances takemfrthe
Albayzin database [10], and used MARMakimum A
Posterior) adaptation to derive the specific GMMs for the
different classes to be trained [8]. This technimqeoeeases the
robustness of the models especially when sparseckpe
material is available. Only the means were adapésd,s
typically done in speaker verification.

2.2. Distance measur e between GMM M odels

theory, apnoea speakers should produce speech with Approximations to th&ullback-Leibler divergencbave been

“inappropriate nasal resonance” [2]. Fox and Momésavork

on the nasalization characteristics of speakerd wieep
apnoea was not conclusive. What they could conglude
however, was that the resonance abnormalities cdad
perceived either as a form of hyponasality or hypsality.
Perhaps more importantly, speakers with apnoea exhipit
smaller intra-speaker differences between non-rexsédinasal
vowels due to this dysfunction (vowels ordinarilggaire
either a nasal or a non-nasal quality dependinthempresence

or absence of adjacent nasal consonants). We etpetted
light on this issue using generative statisticatleiting based

on GMMs to study this abnormal nasalization in OSA
patients. For this purpose we compare the acoustic
characteristics of apnoea and healthy voices ialreasd non-
nasal vowels using an approximation to dlback-Leibler
divergence

The remainder of this paper is organized as follolus
Section 2 we present the methodology and experaheatup
for our study. Later, in Section 3 experimentalftssfor two
different tests are presented. First we will seekdation of
the speech apnoea database collected. Secondigesegibe
how we used GMMs to study nasalization in speech,
comparing the voices of apnoea patients with thiosea
‘healthy’ control group. Finally, discussion andnctusions
are given in Section 4.

2. Method

2.1. GMM-based M ethod

Gaussian Mixture Models5MMs) and adaptation algorithms
are effective and efficient pattern recognition hi@iques
suitable for sparse speech data modelling in Autiema
Speaker Recognition systems [8]. We usedBEEARSopen
source tool in our experimental framework [9]. Distan the
parameterization and model training for the basebgstem
now follow.

Our speech database was processed using short-time

spectral analysis with a 20 ms time frame and an$Qdelay
between frames, which gives a 50% overlap. Fortdls& of
acoustical space modelling we chose to use 39 atdnd
components: 12 Mel Frecuency Cepstral Coefficients
(MFCCs), plus energy, extended with their speed g)ielhd
acceleration (delta-delta) components. We acknayddtat a
representation of the acoustic space that is opddhior the
specific aspects we are studying (those relatédetoesonance
anomalies of apnoea speakers) could provide lreeits, but
this would require specific adaptation of the rettign
techniques we apply, which is not the intended $oofi the
work we present here.

After parameterization, statistical pattern rectigni can

be applied to study or compare voices for spedfieech
segments. We trained a universal background GMM ahod

widely used for measuring differences between pribiha
distributions. However, many of these distancenstions,
while easy to calculate, do not have the properttied the
Kullback-Leibler divergence exhibits, and this mbst taken
into account for their correct interpretation. metrealm of
automatic speech processing, when considering ve@&VM
models obtained by MAP adaptation from a commontuméx
model (UBM), an upper bound to the previous divecgeis
used as a measure of the distance between the snddes
bound can be obtained directly from the Kullbackbler
divergence.

The Kullback-Leibler divergence for two GMMfg,andf,,
is given on the left side of inequality (1) (ittiévial to see that
the inequality holds).

(1)
)

i

(o)

We call the right sideﬁ( f,, f,), which is the upper bound

we will use (2). Since the GMMs are derived frorocanmon
GMM, the weightsa; andb; are equal. By virtue of the fact
that the variances of both GMM probability disttiioms are
equal, and since their components are Gaussiarbdisbns,

it can be proved [11] that

2
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This new distance, which may be interpreted asighted
sum of the Mahalanobis distances between every
multidimensional Gaussian distribution in the mpetu has
several attractive properties. Most importantlyhats a lower
computational cost, especially compared to the gld@erio
methods required to accurately estimate the ad¢tuliback-
Leibler divergence. It is also symmetric, so
D(f,, f,)=D(f,, f,), and it is tight to the Kullback-Leibler

divergence, as shown in [12].
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3. Experiments

In this section we present two experiments that dight on
the potential of using the approach we have alretdgribed
(GMM-based models and distance measures on thewdata
have at our disposal) to discover and model pettigis in the
acoustical signal of apnoea voices. First of a#, will try to
guarantee that the GMM models built describe theustic
space accurately. After this preliminary analysisb-section
3.2 discusses how GMM techniques can be appliestudy
the OSA resonance anomalies identified in the previ
research review. We will study differences in degref
nasalization in different linguistic contexts.



3.1. Analyzing the Speech Database

All the required data was extracted from the presip

mentioned database we collected [3], because, to ou

knowledge, there were no other available resouneesould
use for this specific task. The database contai@secordings
of 80 Spanish male subjects; half of them suffemfrsevere
sleep apnoea, and the other half are either hesithjects or
have only mild OSA. As we pointed out in the intation,
the database has been designed to expect to celesamt
linguistic/phonetic contexts in which physiologic@SA-
related peculiarities could have a greater impathis
includes:

* In relation to resonance anomalies, we designetbsess
that allow intra-speaker variation measurementat th,
including vowels in different linguistic contextso t
measure, for instance, how nasalization varied frasal
to non-nasal contexts (the focus of this study)

e With regard to phonation anomalies, we
continuous voiced sounds to measure irregular pgrma
patterns related to muscular fatigue in apnoea pisti

» Finally, to look at articulatory anomalies we cotkd
voiced sounds affected by certain preceding phosehat
have their primary locus of articulation near treck of
the oral cavity; anatomical region has been seatisfgay
physical anomalies in OSA speakers.

Since we needed to consider acoustical featurspénific
phonetic contexts as we will see, we performed woraatic
phonetic segmentation of every utterance in thalieste using
the HTK open-source tool [13]. Using automatic &mc
alignment avoids the need for costly annotatiothefdata set
by hand. It also guarantees good quality segmentatihich
is crucial if we are to distinguish phonemes ananatic
contexts properly.

Once we have collected and segmented our speech

database, it is necessary to validate it and toarenthat the
heuristic GMM models which we will train condensgoagh
information to distinguish between both groups: igres
suffering from OSA and healthy people. The way dathis is
by building successive GMM models increasing tle sif the
data used to train them, and calculating the distmmetween
non-nasal and nasal vowels (using the measureildedcin
Section 2.2), for both healthy people from the oangroup
and OSA-suffering patients. Figure 1 summarisesréselts

we obtained, showing both mean distance and stdndar

deviation for the resulting values across the wario
experiments we carried out for each size of tha dat.
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Figure 1: Distance between the acoustic model®wkls in

non-nasal and nasal contexts, for both the cogtmlip and

the apnoea patients, as a function of the sizkeofraining
population

included

As the figure suggests, as the amount of data tesedin
the new GMM models increases (by varying the nundfer
speakers used), the models converge, with respedhd
defined distance, to a common model for each ofcthsses.
In fact the observed convergence is quite stabte,the
deviation of the distance between models for thenesa
population size diminishes with it, and is quiteafinfor the
final models conveying data from 39 speakers faheaass.
Given the fact that the distance used is an uppendb of the
Kullback-Leibler divergence, that it is tight toettatter, and
that our results converge, we can guarantee tleaiGiMs
generated accurately describe the acoustic spacésef given
classes. We can further affirm that they are nedyti stable
with respect to the training set and that they eoge also
with respect to the Kullback-Leibler divergence.

3.2. Study of resonance anomaliesusing GMMs

The previous analysis offers a measure of therntlisthetween
inter-class models, i.e. between non-nasal and wasels for
both healthy subjects from the control group andepts
suffering from apnoea. However, certain other mesaments
may be useful to characterize the distance betvibese
classes. It would be possible to design a classdfethis
information, with its discriminative power in someay
associated with such measurements.

We ultimately want to measure the differences betwe
both classes, so it seems reasonable to evaluatdistance
between both of them directly, paying no regard the
different linguistic contexts of the vowels the astic
parameters of which we are analysing, by combiniregdata
for all of the speakers in each group. The distatiues
calculated between our two classes (“apnoea” ameltiy”)
was 1.66 + 0.05. This is a reasonable measureeodligtance
between the trained generative heuristic modelsbaoth
classes, and it may be taken as a reference afahsification
problem. We found the distance to be reasonablplesta
throughout the set of experiments that we carrigd Eor this
reason we may take it as a reference for the distanve
calculate next. We note that we will not make anoythfer
mention to the variability observed in this distanoeasure,
the limits of which are represented as dotted lindSigure 1.
For all distances some dispersion obviously exists,in all
cases it is negligible for the models derived fBrspeakers.

The next step is to analyse different linguistimtexts
using the same metric. A model was generated fohn e&the
two sub-classes nasal and non-nasal vowels, fdr ehthe

subject groups (OSA and non-OSA), and the distances

between the subclasses across the subject grougsthen
estimated. The following table shows the resultaioled.

Table 1: Distance measures between both classesal and
non-nasal contexts

APNOEA
Non-nasal nasal
@] Non-
% nasal 1.89 4.24
2
O | nasal | 393 | 195




Finally, two further measures should be considenddch
are none other than the distances between nasalcamdasal
vowels within the acoustic space of each of thgesutgroups
that were shown in Figure 1. For this distance W&ioed an
estimated value of 3.45 for the control group ah@.45 for
the OSA patients.

4. Discussion & Conclusions

Bearing in mind the useful properties of the metvie have
defined, and the limited scattering of the distanobtained,
interesting insights can be drawn from the results.

It can be seen in Figure 1 that the distances leetwe

models is bigger when comparing nasal and non-nasetls
from the control group than when comparing the samthe
apnoea patient group. This first result supportx Rmd
Monoson’s finding that nasal and non-nasal-contewels
are harder to distinguish in the case of OSA-sifer

speakers. It also suggests that we should expeod go

classification rates with a classifier based ors tldiea. This
result just reflects a difference in intra-groupstdnces
between the two types of vowels, but it does ntaldish any
relation between the nasal and non-nasal contexisoth
experimental groups. Therefore, we cannot estgbbabed on
this measure alone, whether OSA-suffering spealard to
hypernasalize or, rather, hyponasalize.

From Table 1 we can see that the non-nasal vowets f
the apnoea group are much more similar to vowels imon-
nasal context from the control group than to nasavels in
this group, and the converse is true for the nesatext
vowels. Therefore, when classifying both groupsn-nasal

vowels from the apnoea patients would more likely b

confused with non-nasal vowels from the controlugrarather
than with the nasal ones, and vice versa. But @altimormal
effects present in the speech of apnoea patiesteiased with
one type of vowel rather than the other? Well, vay mbserve
that the estimated distance between the non-nasetls of
both groups is approximately the same as the distbatween
the nasal vowels across both groups. Thereforetewbathe
phenomena causing this difference between bothpgrad
subjects may be, it affects both non-nasal andl vaseels to
a similar extent. We suspect this may be causedthiey
abnormal coupling and decoupling of the oral andaha
cavities, which would explain the fact that theeeff is
observable whether the context is nasal or nonkndsas
particular result fits Fox and Monoson’s conclusiarell [2].
We are very encouraged by the conclusion thatgbssible to
use GMM techniques to describe the observablerdiffees
between apnoea and healthy speakers

Finally, the distance found between both classeshés
smallest of all of the measures estimated (1.6b6grdfore,, it
seems reasonable to expect better classificatisultsewhen
using the nasal / non-nasal subclasses insteadeobverall
datasets (which were the ones we used in [6]),naisguthere
is enough data for a precise heuristic modelling tlé
distributions by adapting the primitive UBM. We rema
confident that applying these findings to improvbe t
performance of automatic apnoea diagnosis usingcépe
processing algorithms on continuous speech is &indis
possibility. However, much work must yet be donetovide

a more accurate description of the resonance aimsnal

observed in patients suffering from OSA.
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