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Abstract. We present a novel approach for detecting severe obstructive sleep 
apnea (OSA) cases by introducing non-linear analysis into sustained speech 
characterization. The proposed scheme was designed for providing additional 
information into our baseline system, built on top of state-of-the-art cepstral 
domain modeling techniques, aiming to improve accuracy rates. This new 
information is lightly correlated with our previous MFCC modeling of 
sustained speech and uncorrelated with the information in our continuous 
speech modeling scheme. Tests have been performed to evaluate the 
improvement for our detection task, based on sustained speech as well as 
combined with a continuous speech classifier, resulting in a 10% relative 
reduction in classification for the first and a 33% relative reduction for the fused 
scheme. Results encourage us to consider the existence of non-linear effects on 
OSA patients’ voices, and to think about tools which could be used to improve 
short-time analysis.  

Keywords: obstructive spleep apnea (OSA), continuous speech, sustained 
speech, gaussian mixture models (GMMs), classification and regression tree 
(CART).  

1   Introduction 

The non-linear analysis of speech signals has recently gained a remarkable interest 
from the scientific community, particularly in the last decade. Many different 
applications have been suggested based on this information traditionally neglected 
from speech and speaker recognition tasks. However, researchers have pointed out 
that non-linear processes are involved in speech production, and that new features are 
required to parameterize them [1]. This is particularly relevant when considering the 
detection of abnormal patterns within individual voices, and even more when those 
patterns are meant to be caused by physiological evidences found on groups of 
speakers suffering from a certain condition.  

Obstructive sleep apnea (OSA) is one of those conditions, affecting an estimated 2-
4% of male population between the ages of 30 and 60 years [2]. It is characterized by 



recurring episodes of sleep-related collapse of the upper airway at the level of the 
pharynx and is usually associated with loud snoring and increased daytime sleepiness. 
OSA is a serious threat to an individual’s health if no treated, as it known to be a risk 
factor for hypertension and, possibly, cardiovascular diseases [3]. Actually, it has 
been related to traffic accidents caused by somnolent drivers [2-4], and might lead to 
a poor quality of life and impaired work performance.  

Sleep apnea can be diagnosed on the basis of a characteristic history (snoring, 
daytime sleepiness) and physical examination (increased neck circumference), but a 
full overnight sleep study is needed to confirm the diagnosis, involving the recording 
of neuroelectrophisiological and cardiorespiratory variables (ECG). Excellent 
performance rates are obtained by this method (ca. 90% [5]); however, this test is 
quite expensive and time-consuming, which cause most patients to suffer a waiting 
list of several years before it is done. These considerable delays have motivated the 
appearance of early diagnosis methods which are meant to reduce them, and to 
determine patients’ priority of need and proper place for the polysomnography test. 
Clinicians aim to bridge this gap by using non-invasive tests providing useful prior 
information, additionally to patients’ clinical story. Speech analysis appears to have a 
good opportunity to characterize the alterations/abnormalities of patients’ vocal tract, 
and to be used prior to the polysomnography test aiming clinicians diagnosis.  

 
Few evidences on the effects of OSA on patients’ voices have been reported. Most 

valuable information can be found in a 1989 work from Fox et al. [6] in which the 
results from evaluations of skilled judges on a perceptual study were presented. These 
evaluations have pointed out several differences which can be perceived when 
comparing voices from apnea patients to those from a control group (also referred as 
‘healthy’ subjects), and have motivated further research on sleep apnea patients 
voices. On their 1989 work, abnormal resonances (hyponasality and hypernasality), 
specific articulatory features (due to a probable velopharyngeal dysfunction) and 
phonation anomalies were found in OSA patients voices. Moreover, Robb’s analysis 
on the vocal tract resonances of apnea patients [7], stressed the differences in the 
formant values and bandwidths, particularly for F1 and F2. Continuing with the 
spectral analysis of speech, Fiz et al. [8] considered a different set of measures which 
are nearer to the standards for non-linear systems’ characterization, such as the 
number of harmonics or their mean/maximum frequencies.  

 
In this contribution we intend to characterize the deterministic and stochastic 

dynamics of speech, aiming to improve our automatic speech detection system for 
severe obstructive sleep apnea cases detection. In section 2 we describe our database 
(subsection 2.1), as long as our baseline system based on the characterization, in the 
cepstral domain, of connected (subsection 2.2) and sustained (subsection 2.3) speech. 
Revisions on the new features we have selected to characterize sustained speech non-
linear dynamics are presented in section 3, including a discussion on the alternatives 
for the combination of these features with our baseline system. In section 4 we 
describe several experiments we have carried out to test the improvements on the 
classification accuracy rates. Finally, in Section 5, some conclusions are provided, as 
long as a number of open issues regarding the future prospects on the analysis of 
connected speech dynamics.  



2   Automatic detection of apnea based on speech 

From a broad perspective the detection of pathological voices can be described as a 
standard classification problem in which a set of descriptive features are to be 
selected, while chasing for a set of distinctive patterns which allow us to discriminate 
among a set of classes. For the detection of severe apnea cases this set is restricted to 
a unique partition of the range into two different classes, namely control –healthy- 
and OSA, based on the so called Apnea-Hypoapnea Index (AHI). Conventionally an 
AHI value below 10 belongs to a healthy subject, while values higher than 30 indicate 
a really severe case which should go into medical treatment. Additionally, in this 
problem the set of characteristics describing the acoustic differences between the 
control group and the one formed by OSA patients is still unclear. However, since the 
literature enumerates a number of acoustic differences, mel-frequency cepstral 
coefficients (MFCCs) parameterization was chosen as they relate to the spectral 
envelope of signals and therefore to the articulation of speech and resonances in the 
vocal tract. Actually they have been used successfully in a broad number of situations, 
from speech to speaker recognition and pathological voices detection [9].  

Based on this parameterization, Gaussian Mixture Models (GMMs) have proved an 
enormous potential for modeling the acoustic space of human speech, for both speech 
and speaker recognition. Several strategies can be followed to estimate a good model 
depending on the characteristics of the problem and the amount of data available. In 
our particular situation, we have chosen to begin by training a suitable universal 
background model (UBM) from a broader database, which is further adapted into two 
classes (i.e. control and OSA) by means of a maximium a posteriori (MAP) 
adaptation scheme. Other adaptation techniques have also been tested, however, the 
size of our database seems to be fairly enough for the convergence of the EM 
algorithm into a suitable class-model. Figure 1 summarizes this procedure, from 
which we finally have a set of mixture models corresponding to the control and apnea 
groups respectively.  

 

 
Fig. 1. Apnea and control mixtures training scheme based on MAP adaptation from a UBM 

model trained on the Albayzin database (extracted from [13]). 

Based on these ideas we have designed a set of classifiers which are currently the 
state-of-the-art technology for sleep apnea detection, both for connected and sustained 
speech. For all of them both UBM training and GMM adaptation were developed with 
the BECARS open sour tool [10]. Though formally very similar, intrinsic differences 
have been found in the development of both classifiers [14], mainly because of the 



differences in the nature of these signals, but also because of the limitations of the 
available database and the influence of the training procedures.  

2.1   Speech Corpus 
Keeping in mind the results from the perceptual study carried out by Fox and 

colleagues [6], a set of four phrases was designed to exhibit similar melodic structure 
and to include instances of the following specific phonetic contexts: 

 
- In relation to resonance anomalies, sentences were designed to allow measuring differential 

voice features for each speaker (e.g. to compare the degree of vowel nasalization). 
- Regarding phonation anomalies, we included continuous voiced sounds to measure irregular 

phonation patterns related to muscular fatigue in apnea patients. 
- To look at articulatory anomalies we collected voiced sounds affected by preceding 

phonemes that have their primary locus of articulation near the back of the oral cavity (e.g. 
velar phonemes such as the Spanish velar approximant “g”).  

 
A group of 40 healthy male speakers and 40 male patients suffering from OSA in a 

severe degree were asked to read them three times each, with a specific rhythmic 
structure under the supervision of an expert. Additionally, sustained vowel /a/ 
instances were recorded and included in our database. Further information on the 
design of the database can be found in [11].  

2.2   Connected speech classifier 
Regarding the amount of data needed to estimate a suitable GMM, we decided to 

train a UBM from phonetically balanced utterances in the Albayzin database [12], and 
use MAP adaptation to derive the specific GMMs for the different classes to be 
trained. Only the means were adapted, as is classically done for speaker verification.  

In the end, a GMM-based classification system was trained and tested, based on the 
12MFCC, plus Energy, velocity and acceleration coefficients feature vectors and the 
adapted models. The resulting system provided an overall 76.9% accuracy rate in the 
detection of severe apnea cases on a leave-one-out cross-validation scheme with 256 
mixture components. Further information on this classifier can be found in [13].  

2.3   Sustained speech classifier 
On an attempt to improve the results from the previous classifier, and noticing that 

sustained speech analysis is actually the standard for pathological voices detection, 
we reproduced the same idea for the sustained vowel we had collected in our 
database. However, we lacked of a database which could fit our needs in the same 
way as the Albayzin did for or connected speech classifier. This fact motivated a 
number of questions to decide which was the best way to train and adapt our models, 
and raised a deep discussion on the balance between models’ complexity and the 
dependency of the final model’s convergence with the trained UBM. Interested 
readers would refer to a recently published work [14] for further information on the 
design of this classifier.  

A set of two GMMs with 16 gaussian components was adapted from a UBM 
trained from the sustained vowels in Childers database [15]. The feature vector 
included the same 12 MFCCs, energy, velocity and acceleration parameters used in 



the connected speech classifier. A poor 39.4% EER classification rate was achieved, 
which is actually really far from the result for the connected speech classifier.  

Nevertheless, the information coming from sustained speech was proved to be 
uncorrelated with that coming from connected speech. This seems quite sensible as 
the kind of the information being modeled is quite different on each of these 
classifiers. Still, results from this second classifier can be improved by taking into 
account the differences on the dynamics of speech from apnea patients compared to 
healthy people.  

3   Measures on sustained speech dynamics  

Though most efforts in speech processing have been put into the analysis of speech 
signals as a response to a linear system, the modeling of these signals is currently 
being enhanced by introducing additional measures derived from the fact that speech 
production is actually a dynamic process. Throughout the literature many different 
measures have been suggested which can be used in our classification problem. Those 
algorithms can be broadly classified into three groups attending to the characteristics 
of speech signals on which they rely. Those are: (1) the deviations of the vocal tract 
from an ideal resonator, (2) the recurrent structure of the signals and the self-
similarity property, (3) the existence of noisy components within speech signals.  

The first group includes a subset of features which are based on the cycle-to-cycle 
variations of fundamental frequency and waveform amplitude, namely, jitter and 
shimmer. However, both magnitudes can be measured according to different criteria 
resulting in a set of jitter and shimmer measurements. In the present contribution we 
have chosen to include a subset of those (see Table 1) which have been successfully 
used for speaker verification [16] in order to test their discriminative power.  

Table 1. Jitter and shimmer measurements considered in this work (group 1) on sustained 
vowels recordings (Ti stands for the estimated glottal closure instants –estimated using Matlab’s 
VOICEBOX toolbox [17], and Ai for the extracted peak-to-peak amplitude on each cycle).  
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3-point period perturbation quotient 
based 2 closest neighbours averaging.  

APQ3 shimmer 
3-point period perturbation quotient, 
based on the 2 closest neighbours 
averaging.  

PPQ5 jitter 
5-point period perturbation quotient 
requires averaging in the period and 
the four closest neighbours.   

APQ5 shimmer 
5-point period perturbation quotient 
requires averaging in the period and 
the four closest neighbours.  

  APQ11 shimmer 
11-point period perturbation quotient 
requires averaging in the period and 
the four closest neighbours. 



In this same group, a novel measure for pitch period uncertainty estimation was 
included: the pitch period entropy (PPE) [18]. PPE quantifies the inefficiency in 
speaker’s voice frequency control in terms of the unpredictability of the fundamental 
frequency evolution curve while uttering a sustained sound.  

 
Regarding the second group, a whole set of measures have been proposed which 

are based on ideas from the dynamic systems theory. All of them are somehow related 
to the recurrence and self-similarity properties assumed for the sustained production 
of speech sounds. For this contribution we have chosen to use two of the most 
common and well-known measurements [18], briefly described on Table 2.  

Table 2. Brief description of the RPDE and DFA measures ( x(n) is the speech sample, (a,b) 
result from a first-order approximation to the windowed series, Nmax is the maximum recurrence 

time in the series attractor, and R(i) is the normalized histogram of the recurrence time).  

Measure Definition Equation 

RPDE 
Recurrence 
Period 
Density 
Entropy 

Extends the conventional concept of 
periodicity and substitutes it by the idea of 
recurrence, and represents the uncertainty 
in the estimate of the pitch period. 
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Finally, the third group includes different measures which are all based on the idea 

of estimating the fraction of noise in the recorded speech signals. This fraction is 
usually presented by means of the estimated signal-to-noise ratio (SNR), or its 
converse the noise-to-signal ratio (NSR), attending to a certain definition of energy 
(e.g. the squared energy operator, SEO, or the Teager-Kaiser energy operator, 
TKEO). In this contribution we have selected two measures [18] based on noise level 
estimation which decompose speech signals attending to:  
- an hypothetically invariant excitation: the vocal fold excitation ratio, VFER  
- a decomposition of the signal into a set of AM-FM contributors –intrinsic mode 

functions: the empirical mode decomposition excitation ratios, EMD-ER.  
 
All these measures were estimated on each record of a sustained vowel in the 

apnea database, properly segmented in advance to guarantee their successful 
estimation and avoid abnormal effects in the speakers’ utterances.  

4   Experiments and results  

In order to achieve a final decision on whether a certain speaker is suffering or not 
from OSA through the automatic processing of his utterances, and aiming to improve 
the results from the classifiers described in Section 2, feature sets are to be built by 



the combination of the measures presented in Section 3 and the averaged scores 
assigned to cepstral feature vectors by the log-likelihood ratios using the apnea and 
control mixture models (i.e. GMMs). Figure 2 depicts a block diagram summarizing 
the overall scheme of the designed system. The resulting parallel scheme suggests an 
incremental improvement of the classifiers, which fits our initial motivation for 
improving our baseline system.  

 
Fig. 2. Combined scheme for the two systems developed to the automatic detection of severe 

obstructive sleep apnea cases (based only on sustained speech – dark grey-, based on the 
combination of connected and sustained speech -white) 

Two main branches can be identified on Figure 2, the upper one corresponding to 
the sustained speech processing and classification; and the lower one summarizing the 
testing procedure for our continuous speech classifier (see subsection 2.2), which is 
finally combined with the upper branch aiming to improve classification results.  

The fusion of the different branches in order to reach a decision on the presence or 
absence of speech patterns which could be related to OSA, was carried out by means 
of a standard classification and regression tree (CART). The regression trees 
estimated for the fusion on the purely sustained speech classifier and the combined 
connected and speech classification were trained and tested according to a standard 
leave-one-out cross-validation scheme, just as the prior GMM classifiers. The 
optimization of the regression tree was defined as a conventional misclassification 
rate minimization problem in order to be implemented. Additionally, prior to the 
CART training, tests based on minimum-redundancy and maximum-relevance feature 
selection tests were developed to identify features with negligible interclass 
variability. The result is quite similar to a posterior pruning of the lower branches, 
though this solution reduces the number of features beforehand, and therefore 
simplifies and accelerates the estimation of the regression trees. The reduced feature 
set includes: VFER and IMF –in different implementations- RPDE, absolute shimmer 
and MFCCs (static coefficients, velocity and acceleration fusion at score level).  

Table 3. Classification accuracy for each of the classifiers.  

 Classifier Sensitivity 
(%) 

Specificity 
(%) 

Positive 
Predictive Value

Negative 
Predictive Value Accuracy (%) 

1 Sustained 66.0 63.0 66.0 63.0 64.6% 

2 Sust. & Connected 86.7 90.6 90.9 86.2 88.5% 



Finally, classification rates were obtained for each configuration (Table 3), 
achieving a 35.4% error rate for control/OSA classification based on the information 
modeled by sustained speech analysis (upper branch), which happens to be a 10% 
relative reduction from the previously reported rate 39.4% [14] (p=0.075 binom. test). 
On the other hand, the combined scheme including scores from previous GMM-based 
classifiers and the complexity measures introduced in Section 3 had an estimated 
misclassification rate of 11.5%, over a 33% relative reduction from our previous best-
performing system for which the EER was estimated to reach a 17.3% [14].  

5   Conclusions and future work 

The incremental methodology presented in this paper to improve our baseline 
system by introducing complementary information for severe OSA cases detection 
has achieved excellent results. The inclusion of non-linear measures describing 
speech dynamics in the production of sustained vowels has enhanced our 
characterization of the acoustic space and improved classification rates when only 
sustained sounds are analyzed. Though still far from the rates achieved by modeling 
connected speech, this result encourages us to explore other possible 
parameterizations suitable to describe the complexity of coarticulated sounds. 
However, the particular pathogenesis of OSA regrets following such approach for a 
future full-AHI-range OSA detection system, as abnormal patterns caused by vocal 
folds irregular vibration can only be expected in a severe stage of the syndrome.  

Moreover, the combination of three branches of measures and information (i.e. 
linear connected and sustained, and non-linear sustained speech) to make a single 
decision has produced a significant improvement in the classification rate for the 
control/severe-OSA problem. This reinforces the fact that information coming from 
sustained and connected speech is poorly correlated  

We are quite enthusiastic on these results, though some improvement can be 
expected by introducing new sets of features. The short-time changes in the non-linear 
dynamics of connected speech still require further analysis in order to be included into 
our features sets. Following the proposed scheme, those could be introduced into our 
classification system in the same way as we just did for sustained vowels.  
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